SECTION 715 - ALUMINUM 715.01 Aluminum. The Contractor shall furnish aluminum according to the *| contract. - 715.02 Contact with Dissimilar Materials. The Contractor shall keep the *| aluminum from direct contact with the steel or other dissimilar material by painting as follows: - (1) The Contractor shall give aluminum surfaces placed in contact with *| steel one (1) coat of zinc chromate primer according to Federal *| Specification TT-P-645 or the equivalent coat of a suitable nonhardening *| joint compound to exclude moisture from the joint during prolonged service. The Contractor shall get additional protection by applying the *| joint compound and zinc chromate primer. The Contractor shall allow the *| zinc chromate paint to dry hard (air-dry 24 hours) before assembly of *| the parts. The Contractor shall paint the steel surfaces placed in contact *| with aluminum with zinc chromate primer according to Federal *| Specification TT-P-645. The Contractor shall follow with one (1) coat *| of paint consisting of two (2) pounds of aluminum paste pigment (ASTM D *| 962 Type 2, Class B) per gallon of varnish meeting Federal Specification TT-V-81d, Type II. The Contractor need not paint stainless steel, or aluminized, *| hot-dip zinc-coated, or electrogalvanized steel placed in contact with *| aluminum. - (2) The Contractor shall give aluminum surfaces in contact with wood, *| concrete, or masonry construction a heavy coat of alkali-resistant *| bituminous paint before installation. The Contractor need not paint the *| Aluminum embedded in concrete with alkali-resistant bituminous paint. *| The bituminous paint used shall conform to United States Military *| -- Specification MIL-P-6883. The Contractor shall apply the paint while *| receiving the paint from the manufacturer without adding thinner. *| - (3) The Contractor shall give aluminum surfaces embedded in concrete *| one (1) coat of zinc chromate primer conforming to Federal Specification *| TT-P-645. - (4) Water in contact with aluminum after first running over a heavy *| metal such as copper may contain trace quantities of the dissimilar *| metal or its corrosive product. The Contractor shall get the protection *| by painting or plastic coating the dissimilar metal. - 715.03 Fabrication of Welded Aluminum Structures. The welding definitions *| used in this contract shall be according to the latest edition of AWS *| Definitions Welding and Cutting (AWS A3.0) of the American Welding Society. The welding symbols shall be those shown in the latest edition of Standard *| Welding Symbols (AWS A2.0) of the American Welding Society. ### (A) Base Metals. - (1) The manufacturer shall make aluminum alloys by welding *| according to the contract. - (2) Material used for backing shall be at least equivalent in weldability to the base metal being welded. - (B) Welding Processes. This contract includes provisions for welding by the gas metal-arc process and the gas tungsten-arc process. ### (C) Filler Metal. - (1) Bare wire electrodes for use with the gas metal-arc process and welding rods for use with the gas tungsten-arc process shall conform to the latest edition for Aluminum and Aluminum-Alloy Welding Rods *| and Bare Electrodes, AWS A5.10. - (2) Tungsten electrodes for the gas tungsten-arc process shall conform to the latest edition for Tungsten-Arch Welding Electrodes, *| AWS A5.12. - (3) Filler metals used with particular base metals shall conform to the latest edition for Aluminum Bridge and other Highway Structures *} of the Aluminum Association. - (4) The Contractor shall keep the filler metals covered and store *| the filler metals in a dry place at uniform temperatures. The *| Contractor shall not open the original rod or wire containers until *| the Contractor uses the containers. Rod and wire shall be free of *| moisture, lubricant or other contaminants. The Contractor shall *| keep the spools of wire temporarily left unused on the welding *| machine covered to avoid contamination by dirt and grease collecting *| on the wire. The Contractor shall return the spool to the carton *| and reseal the carton tightly. # (D) Shielding Gases. - (1) Shielding gases shall be welding grade or better. - (2) Shielding gas for gas metal-arc welding shall be argon, helium or a mixture of the two (2) (at least 40 percent helium). - (3) Shielding gas for gas tungsten-arc welding using alternating current shall be argon. - (4) Shielding gas for gas tungsten-arc welding using direct current, straight-polarity, shall be helium. - (5) The Contractor shall make hose used for shielding gases of *| synthetic rubber or plastic. The Contractor shall not use natural *| rubber hose and previously used hose for acetylene or other gases. *| ## (E) Preparation of Materials. - (1) Joint details shall be according to design requirements and *| detail drawings. - (2) Edge preparation shall be by sawing, machining, clipping or shearing. Also, the Contractor may use gas tungsten-arch or gas *| metal-arc cutting. Cut surfaces shall conform to the ANSI Standards *| surface roughness rating value of one thousand (1,000). The *| Contractor shall not use oxygen cutting. - (3) Surfaces and edges that the Contractor will weld shall be free *| from fins, tears and other defects that would adversely affect the quality of the weld. - (4) The Contractor shall remove dirt, grease, forming or machine *| lubricants or organic materials from the areas that the Contractor *| will weld by cleaning with a solvent or by vapor degreasing. *| - (5) On edges and surfaces that the Contractor will weld, the *| Contractor shall remove the oxide just before welding by wire *| brushing or by other mechanical methods such as rubbing with steel *| wool or abrasive cloth, scraping, filing, rotary planing or sanding. If the Contractor uses wire brushing, the Contractor *| shall make brushes of stainless steel. The Contractor shall not *| use hand or power driven wire brushes used on other materials on *| aluminum. - (6) If mechanical methods of oxide removal are inadequate, the *| Contractor shall use a standard chemical method. The Contractor *| shall weld within twenty-four (24) hours after chemical treatment. *| - (7) When using gas tungsten-arc welding with direct current straight polarity, edges and surfaces that the Contractor will weld *| shall have the oxide removed by a standard chemical method. - (8) The Contractor shall not weld on anodically treated aluminum *| unless removing the condition from the joint area that the *| Contractor will weld. #### (F) Welding Procedure. - (1) Butt welds shall have the root of the initial weld chipped or *| machined out to sound metal before the Contractor starts welding *| from the second side. Exception are those with the aid of backing. *| Butt welds made with the use of backing shall have the weld metal *| thoroughly fused with the backing. If accessible, the Contractor *| shall remove the backing for welds that are: *| - (a) subject to computed stress and are not part of the *| structure, and *| (b) exposed to view from the completed structure and are not *| part of the structure. The Contractor shall ground the backing smooth. *| In tubular members, the Contractor shall make butt welds *| subjected to computed stresses with the aid of permanent backing *| rings or strips. - (2) The procedures used for production welding of particular joints shall be the same as used in the procedure qualification for that *| joint. - (3) The Contractor shall protect the shop or field welding *| operations from air currents or drafts. The Contractor shall provide *| Adequate gas shielding to protect the molten metal during *| solidification. - (4) The Contractor shall position the work for flat position *| welding whenever practicable. - (5) In shop and field, weld joints shall be dry at time of welding. * - (6) The size of the electrode, voltage and amperage, welding speed, gas or gas mixture and gas flow rate shall be suitable for: - (a) the thickness of the material, - (b) design of joint, - (c) welding position, and - (d) other circumstances attending the work. - (7) The Contractor shall do gas metal-arc welding with direct *| current, reverse polarity. - (8) If the joint that the Contractor will weld needs specific root *| penetration, the Contractor shall make a sample joint and a *| macroetched cross section of the weld. The sample joint shall have a *| length of at least one (1) foot. The Contractor shall weld the *| sample joint with the electrode, polarity, amperage, voltage, speed, *| gas mixture and gas flow rate proposed for use in production *| welding. The Engineer may accept evidence on record instead of the *| preceding test. - (9) If the Contractor needs to preheat, the temperature of preheat *| shall not exceed three hundred and fifty (350) degrees Fahrenheit for heat-treated alloys and six hundred (600) degrees Fahrenheit for non-heat-treated alloys. The Contractor shall measure the *| temperature by the temperature showing crayons or by pyrometric equipment. The Contractor shall not hold the heat-treated alloys *| at the maximum preheat temperature or at temperatures near the maximum for more than thirty (30) minutes. ## (G) Weld Quality. - (1) The Engineer will not accept the following weld conditions: *| - (a) Cracks in welds or adjacent base metal; - (b) Copper inclusions; or - (c) Porosity over that permitted by Appendix IV, Section VIII of the ASME Boiler and Pressure Vessel Code. The Engineer may accept the welds from lack of fusion, *| incomplete penetration, or tungsten or oxide inclusions only if *| small and well dispersed. - (2) Undercut shall be less than 0.01 inch deep when its direction | is transverse to the primary stress in the part that is undercut. Undercut shall be less than one thirty-secondth (1/32) inch deep | when its direction is parallel to the primary stress in the part that is undercut. - (3) No overlap shall be allowed. - (4) The Contractor shall fill the craters to the full cross *| section of the welds. *| - (5) Welds having defects greater than the levels of acceptance specified above shall be considered as rejected unless corrected according to Subsection (I). #### --(H) Inspection. - (1) The Contractor shall inspect the welds visually according to *| Subsection 715.03(G) Weld Quality. Also, the Contractor shall *| inspect the welds subject to computed stress by the dye penetrant *| method except according to Subsection 715.03(H)(4) or by use of *| radiographic inspection. - (2) For truss type structures, the Contractor shall use the dye *! penetrant method on: *! - (a) butt welds in columns and main chord members, - (b) fillet welds connecting columns to bases and main chord members including the associated flanges, gussets or main load-carrying brackets or members, and (c) fillet welds connecting flanges to the main truss chord members. On pole type and common light standards, the Contractor shall *| use the dye penetrant method on butt welds in columns and on *| fillet welds connecting columns to bases. - (3) The Contractor shall do the dye penetrant tests according to *| ASTM E 165, Standard Methods for Liquid Penetrant Inspection, Method *| B, Procedure B-2, or B-3. - (4) The Engineer may omit the dye penetrant inspection provided the *| Inspector examines each layer of weld metal with a magnifier of 3X minimum before depositing the next successive layer. ## (I) Corrections. - (1) The Engineer may permit corrective measures listed below. The *| Contractor shall get the Engineer's acceptance before making each *| repair. - (2) The Contractor shall correct the defective weld by removing and *| replacing the entire weld, or as follows: - (a) Cracks In Welds Of Base Metal. The Contractor shall *| resolve full extent of crack dye penetrant method or other positive means. The Contractor shall remove the cracks *| throughout its length and depth, and reweld. - (b) Excessive Porosity, Lack Of Fusion. The Contractor shall *| remove defective portions and reweld. - (c) Copper Or Tungsten Inclusions. The Contractor shall remove *) defective portions and reweld. - (d) Excessive Concavity Of Crater, Undercut, Undersize Weld. The Contractor shall clean and deposit additional weld metal. *| - (e) Overlap. The Contractor shall reduce by removal of excess *) weld metal. - (3) The Contractor shall remove defective areas by chipping or *| machining. The Contractor shall not use oxygen cutting. Before *| rewelding, the Contractor shall inspect the joints. If using dye *| penetrant to inspect the weld, the Contractor shall remove traces of *| penetrant solutions with solvent, water, heat or other suitable means before rewelding. - (J) Qualification of Procedures, Welders And Welding Operators. - (1) Tests prescribed in Part B, Section IX, of the ASME Boiler and *| Pressure Vessel Code shall qualify the joint welding procedures. *| The Engineer may accept evidence of previous qualification of the *| joint welding procedures that the Contractor will use. *| - (2) Tests prescribed in Part B, Section IX, of the ASME Boiler and *| Pressure Vessel Code shall qualify the welders and welding *| operators. The Engineer may accept evidence of previous *| qualification of the welders and welding operators. The Contractor *| shall use the same process and type of equipment for execution of *| the construction work in qualifying welders and welding operators. *|